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1. INTRODUCTION

It has long been appreciated that the simple birth-and-death Markov
process often provides an adequate initial model for the behavior of
service systems, populations, epidemics, and many other stochastic
systems; see Feller [3] for an early classic account. Refirements,
particularly in the modeling of service systems, have typically involved
the replacement of exponential service times, also assumed independent, by
independent random variables of "general" or arbitrary distribution,
replacement of independent exponential inter-arrival times by independent
"general" random variables, or both. Isolated examples in which arrival
process parameters are allowed to change deterministically in time have
also been studied.

Randomly appearing fluctuations in system environment, associated
with weather or other change in physical surroundings, personnel changes,
alteration of system usage intensity, etc., are likely to be reflected
in changes in observed failure and repair rates in a system reliability

context.

3 1.1 Examples : In order to illustrate the ideas summarized above, we
introduce two specific birth and death models in random environments.

Numerical results and discussion will be found in the last section.

Repairman Model. Suppose any of m machines that are in use fail independent-
ly in Markovian fashion at rate (At, t » 0}, and, if failed, experience
repair at rate {”t' t > 0}. In turn, the rates {At} and (ut} are then-
selves finite-state Markov processes independent of the state of the

machines, so that if n is the number of machines on repair, and j identifies

the environmental state, then (n,j) is the overall state variable of the




system; conditional upon j, n cnanges by onc unit at a time in typical
birth-death fashion witih parameters depending on j : the probability that
an operating machine goes down in (t,t+dt) is Aj(m-n)dt + o(dt), while tne
probability that a machine on repair becomes available is My min(R,n)dt + o(dt), ,
R being the number of repairmen. Such a setup describes groups of '
redundant equipments that all experience common environmental intensities
simultaneously; the environmental changes are reflected in the numerical
values of the failure and repair rates that prevail at any time point.
The model described also may be used to represent the behavior of a net-
work of m timesharing computer terminals that independently send messages or
programs to a common central computing facility. Suppose the rate of message
transmission changes with external activity, i.e. responds to an occasional
period of unusual activity, perhaps a crisis situation. In tnis case the
“constant" demand rate x (assumed equal for all terminals) switches almost
instantaneously to a higher value, switching back to normal after the crisis
elapses, but doing so repeatedly. Left alone, the central processor may well
continue processing at the original rate, allowing congestion to simply build
up, and eventually drop again when the demand lapses. On the other hand,
remedial action may be taken. These phenomena suggest interesting and realis-
tic questions concerning stochastic control, but these wili not be

considered in this paper.

Mass Search Model. Let a group of m predators attempt to round up and capture

a finite group of p prey. Predators search independently and with equal inten-
sity and effectiveness, but the detection rate is allowed to depend upon exter-
nal environmental conditions that cause relatively long-term changes in, say,
visibility. If a prey is detected, it is followed until lost by the predator,
after which moment it is susceptible again to search, detection, and active
surveillance. While predators and prey move independently, as soon as a pre-
dator begins following a particular prey the latter is removed from circula-

ticn and the remaining unattached predators continue search for the free prey.

ity im0 . At LE




Of interest is the long-run or stationary distribution of the number of

prey under simultaneous surveillance, and also the first-passage time until
a large fraction- perhaps all- of the prey are simultaneously under the eye
of the predators. Here is & plausible model : the state of the system is
(n,Jj), so that if the number of prey under surveillance, is n, and the
state of the environment is j, then the probability that a free prey is
detected is xj(p-n)(m—n)dt + o(dt), while the probability that a prey under
surveillance is lost is ujndt + o(dt), where n < min(p,m) and xj and oy
change in accordance with independent finite-state Markov processes, as

before.

1.2 The analytic structure : We shall consider Markov processes

{(Xt,Yt). t > 0}, on the state space {(n,j), 0 < n<N, 1<j<Kp}, witha

block-tridiagonal infinitesimal generator Q :

[’A(O) PAC 0
w1l D (1) 0
o WD A2 @ , 0
Q= : . (1Y)
: W) 4(N-1) (WD)
0 0 MM (M) J
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Here A( are square matrices, respectively of order

Ky Kl‘ o Ky Their diagonal elements are strictly negative, all other
elements are non-neqative. The matrices A(n), 0 € n< N-1, and M("),
1 <n =N, are rectangular, with appropriate dimensions ; their entries

are non-negative. The rowsums of Q are equal to zero, therefore we

F have that
(
% 2% (Ve -0,
| e 4+ alide 4 (Ve L g, 1<i <N-1,
' M(N)g + A(N)e =0,
i whera e denotes 2 column vector with unit elements. The variable Yt
'S Lo Le interpreted ds the state of the environment, and Xt as the
t state of the birth and death process, at time t .

we assume, furtrermore, that the Markov process G is irreducible, and we
derote by level n the set {{n,j), 1 <J < Kn}, of states corresponding to
the common value n for the first index. The structure (1.1) of Q permits
the Markov process to move up or down by only one level at a time. It is
in tris respect analogous to the classical birth-and-death process, see
Feller [3) or karlin and Taylor [5].

In the examples cited above, either X or Y changes each time the

Markov process undergoes a change of state. In fact, this restriction is

rot part of the model, and we allow X and Y to change simultaneously.

1.3 tixisting literature: 1Infinite birth-and-death models in random

environment have been studied for some time already; early results are
found in Eisen .nd Tainiter [2], Purdue [11] and Yechiali [14]. More

recently, Neuts [9), Chapter 6, has systematically examined a class of

protlems in which N = «, and Q has a special repetitive structure :




This structure leads to matrix-geometric stationary probability vectors and
efficient algorithmic procedures.

Finite models have been examined by Torrez [12], who suggests using
numerical procedures designed to solve eigenvectors for band-matrices.
Hajek has considered in [4], Section 5, a finite model with repetitive

structure :
Al 262 oLy (N2)
all) 2 a2) o2 a1
wi2) - u(3) . u(N-1)

K1 =K K

= K.

2 N-1
Hajek determines the stationary probability vector in terms of two matrices
R and ;, of order K, which have to be iteratively computed. Finally, Keilson
et al. [6] nave considered finite models with the structure (1.1) and equal
Kn's. They analyse the (Laplace transform of) first passage times distributions,
from which they obtain equations for moments, and for the stationary distribu-
tion. We cannot in this short space describe in detail the differences between
our results and those in [4, 6, 12]; but we shall give some discussion at
the end of Section 5.

This paper presents an efficient computational approach to the analysis
of birth-and-death models in a Markovian environment. The emphasis is upon
obtaining numerical properties of both stationary distributions (in the next
section), and first-passage time (:n Sections 3 and 4). The computational

algorithms are discussed, and numerical examples are given, in the last two

sections.

2. THE STATIONARY DISTRIBUTION

In order to determine the stationary probability distribution, and moments of

first passage times, it is useful to think of the Markov process as evolving in

a certain manner,




N ——

For ¢ = n ~ N-1, define Sn to be the restrictijon of the original process Q,
observed during tnose intervals of time spent at level n, before the original
process enters level n+l for the first time, the state space of S, is

(n,j), 1 =j« Kn}. Clearly all Sn, 0 < n < N-1 are transient Markov proces-
ses.  ine process SN is the restriction of the process Q to the states
NI, 1wy = Kx}; it is an ergodic Markov process. We denote by Cn the
infinitesimal generator of the process Sn’ 0 <n<N,

in order to letermine the matrices C . we need the following result.

Lamry ]

Cansider 1 Yarkav process on the state space ({1,2,...,r,r+l,r+2,...,r+s},

w' " infinitesimal generator b :

LA . (2.1)

where A is a square matrix of order r, A is a rectangular r by s
fytrix, The states r+l to r+s are all absorbing.

. The s+ates 1 to r are all transient if and only if the matrix A is non-

singular,
L vhe {i.)th entry of (-A7Y), for 1 < 1,5 <r; is the expected amount of

time 5nent in tre transyent state j, starting from the transient state i,

nefrre Ansarotinon ie any of the absorbing states.

oo The (1,kth entry of (-A-l 1), for 1 <i<r, r+l € k<r+s, is the

vrobability that, starting from the transient state i, absorption occurs

in the state k,
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Proof. The first assertion is proved in deuts [3], Lemma 2.2.1.

1

The matrix A™* has all nonpositive entries. The second assertion is

i a consequence of Neuts and Meier [10], Corollary 2. To determine the
! probability Pi K of being eventually absorbed in state k, r+l < k < r+s,
starting from state i, 1 < i < r, we study the Markov chain embedded at

] instants immediately following a transition in the Markov process.

] A
The corresponding transition probability matrix P is given by
r . =
" 1-8°A -4 A
P = ’
0 I

—

where the matrix A is diagonal, with diagonal entries equal to those of A.

—

It results from Kemeny and Snell [7], Theorem 3.3.7, p. 52, that

p=11-(1 -zs‘lA)]'1 (-A'IA) = (-A'I)A;

which completes the proof of Lerma 1. o
! We may now determine the matrices C .
Lemma 2
c. = al0 . (2.2)
0 ?
n) . o(n),_e-1 y,(n-1) < 2.3)
¢, =AM s WMl D, 1< <, (

Proof. The equation (2.2) is obvious :starting from level 0, the process S0

terminates as soon as the process Q enters level 1. veanwhile, the transi-

tions are governed by A(o). Since the process Q is irreducible, the
process S0 contains only transient states, and the matrix Co is non-

singular, by Lemma 1. Also, (<Co)™! >0,




S.
A, e duler oone The jenerator C1 of the process S;. Let Zl(t),
Soay ke deriren g Toitows. Zl(z) = 1 if the process S1 is in state
av od T I I8 Zl(r) = i, and Zl(r+ dt) = j # 1.
N - rnsition wust nave occurred in the process Q. Zy{v+dt) =]
2 oaniy if one of the following events have occured.
T cweanaioioo o fegm 10 to {1,3), this happens with probability
l Gt b ool
Th e e e n 0 g {0,k), for some k, and the process Q
mat et v 0P afrer spending an unspecified amount of time at level O,
Cetors 7 0 T sew otrer state at level 1., This happens with probability

v;:f g oo (dr), where R is the probability of moving from

Chop oty 1LY before visiting any other state at level 1.

. ) .
T owe ses 4n {2 1Y 8 = A(O/ and A = A(O), it results from Lemma 1 that

-4

PLi ek = 31Ty (0) = ] = Aslg b+ 10 M,(ll')( (~A(0)-1A(0))k’j ds

+ 0 (dr), 1< i+ § <K,

PIT o) =il
: k=1

+ 0 (dt), 1< <K .

(=11 = el g+ 20 W) (AOHO)




thus, €y = AN m{1)(-al0))14(0)

2 A(1)+ M(l)(-Cal)A(o),
which proves (2.3) for n=l,

Assume that (2.3) holds for n, we prove now that it holds for n+l. Llet
Zn+l (t)y T >0, be equal to i 1{f the process Sn+1 is in state (n+l,i)

at time 1.

If Zn+1 (t) = i, then ZM1 {t+dt) = j&i if and only if one of the fol-

lowing events occurs,

a. There is a transition from (n+l1,i) to (n+1,j), with probability
Ag?;l)dr + o(dr).

b. There is a transition from (n+l,i) to (n,k) for some k, with probability
MgTzl)dr + o(dr), and the process Q returns to (n+l,j), after spending an
unspecified amount of time at levels 0,1,...,n, before visiting any other

states at level n+l, with probability vﬁn}.

Since Sn records the visits made by Q at level n before reaching level

n+l, we have by Lemma 1 that

vt = Al . (2.4)

It is now easy to prove that (2.3) holds for n+l, which completes the proof

of the Temma.




©oonite the stationary probability vector P, i.e. the
“ 7 =0, Pe =1, We partition that vector as
“ters the subvectors g“ have Kn elements and

» 28 level n, 0 < n €N,

Tty g

Trewertoes T 0T 2T v 4 are determined by the equations
.o (2.5)
- C ey for 0 <n <N-1, (2.6)
(2.7}
Prn freenote tvdctare (2,1) of Q, it results that the system

T 7 o my e Hacaengoed into

A =0, (2.8)
3 T (n+1) _ -
L Cn +%”M =0, 1<n<N-1, (2.9)
s, (2.10)
Vot ;o' {7.WJ) are matrix equivalents of the familiar

Ligrary e gatien for birth-and-death processes. They may also be

Ps

PCooretahility balance.

iv.




1.

From (2.9), Py = -2, MDAl p M (o). Then, by recurrence,
using Lemma 2, the vectors P, , 1 <n <N, satisfy the equations (2.5) and
(2.6). Since the matrix G is the infinitesimal generator of a finite
irreducible Markov process, Equation (2.5) has a unique solution, up to a
multiplicative constant, and that constant is determined by (2.7).

=]
This result suggests an algorithm to compute the stationary probability
vector,
Algorithm A,
Al. Determine recursively the matrices Cn, 0<n<N.
A2. Solve the system m, C, =0, m e =1.
A3, Compute recursively the vectors En , n=N-1, ..., 0, using ™

instead of E.N .

A4, Re-normalize the vector P so obtained.

A complete analysis of this algorithm is deferred. We shall make some
comments on it at the end of this section. Examples of numerical appli-

cations to certain specific models are presented at the end of the paper.

3. FIRST PASSAGE TIME TO HIGHER LEVELS

We denote by Tn the first passage time from level n-1 to level n,

and by Th.m the first passage time from level n-1 to level m>n :
’

Tm = inf {t>0:Xt=m| ¥p = n-1} , 1<n<m<N,

We define, for x =0, 1 €n <N, 1<i<K 5 1<K,

o{" ) = P AT <k, ¥y g =3 ] Xy = neL, Y = D
n




A L R

Lhal

SR

LY

o

+

el InglM g+ x alM I g{M ()« a{mo g
’ ‘ 'J

i,J K¢ j i,k

K

M3

k=l ?

k,J i

-2 n-1
-1 -1),
m{" 1y = gﬁfm ) gé?%(x) + o(n),

* denotes the Stieltjes convolution. Substracting

..des of equation (3.1), dividing by h and letting

. iirst order differential equation for ggng(x).

D)

tdx

5.1 that

tne Laplace-Stieltijes transform of 9

n)
S

o=l g (01 yn DD )M g,

= A(O)G(l)(ﬁ) + A(O).

. heowritten as
0
v Do(e) A( ),

- Dn-l(g) A(n"l)’

e - al0)y-l

»

1 - A(”)_ 1(")G(n)(5))'1,

for 2 <n<N,

for 2 <n <N,

1<n<N-1.

12.

v e state of the system at time h, a simple probabilistic

(3.1)

N ggng(x)] dx, and by G(n)(e) the matrix with entries

(3.2)

(3.3)

(3.9)

(3.5)

(3.6)

(3.7)




3.

T +

tet o{™™ ) Pl <x, ¥
’ s n,m

j 0 =1 | XO = n-1, Yo = i1,

and let ngjm)(g) denote the Laplace-Stieltjes transform of ggnjm)(x).
* 14

We readily obtain that

(MM gy = gMm=D gy gl gy, (3.8)

m
v oK), (3.9)
k=n

for 1<n <m<N, where we define G("’"'l)(g) = 1 for all n.

We easily prove from Lemma 2 and Equations (3.4) to (3.7) that

~ -1
Dn (0) =-C,° for 0 €< n <N-1, (3.10)

-1

-1
1 A1 e 1< <N, (3.11)

hence &™) = - ¢

which is merely another representation of Equation (2.4) , Since (G(")(O))i j
is the probability that, starting from (n-1,i), the process Q visits

(n,Jj) before visiting any other state at level n.

(n,m) _ 2 (n,m)
Let U =-— G .
e ot (E)]€=o

We have that

ufram) Bty e Yo 40 =3 | Xg =01, ¥g = 41,

and  yl{Mm)
i

E[rn’mlxo = n-1, Y0 = i),

where y(Mm) | y(nam)

we define (M = y(mn) o 2 6(M(2)], .0 » and u(™ = u(Me,
3¢ &= - -

N, A ¢ 1By ot 2
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..oy of the first passage time to higher levels satisfy

~ce relations.

it (3.12)
» C’ll(e+W(n-l)u(n-l)), for 2<n <N\, (3.13)
n-1"- - :
,
. gtmm D gy o™, for 1<n<ms<N, (3.13)

i, be proved by differentiating equations (3.6) and
and evaluating the derivatives é% Dn(&) at ¢ =0.
“von first probabilistic principles. First, equation
cemma b (b) and (2.2). Then let V be the elapsed
- enters a different level: that is,

: x“\ . By the strong Markov property, Lemma 1, and




<, . .

- miw‘j&ﬂ*

15.

Hence,

[I - (-A(n))-] M(n)(-c;)l])l\(n-])] E(n"'])
= (-alM)T g 4 (alm)y=T yln) (0 (3.16)

Multiplying both sides of (3.16) by A(n) results in the equation

(Al M e a1y (M) (3.17)

_ _[e « yn) !(n)].

Equation (3.13) now follows from (2.3) and (3.17).

Since

E[Tn,m|xO =n - ], YO = i]

E[T

f

n’m_] + TmIXO =n - ], YO = i]

= y_(n’m-])(i) + G(n’m-])(O) —u_(m) (i)
equation (3.14) also follows.

Any number of moments of the first passage times may be similarly obtained.

We merely state the following result for second moments, without proof.

S

2 oo 8 L RPN e L Sy E -




10.

2
1 n,m

Uw;ﬂ,r“) = E [T

(n) o (nan)

\J'
i 3 ’

n<m<N. We have

Ve - Cal)g(l), (3.13)

S w2 -l 1e mnDytnetly () (3.13)
o (- ¢y w0l er 2 <n <,

!(n,m) - y_(n,m-l) + 2 U(n,m-l)y-(m) + G(n,m"l)(o) l(m)a (3.20)

n <N

n:rks. Theorems 1 and 2 show how the matrices C , 0 <n <N, determined

temma 20 play a central role in the determination of both the stationary

A SN

- anitity distribution, and the moments of first passage times to higher
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Example: Consider the repairman model of Section (1.1). Assume there
are just two environment states, denote by j =1, 2 . Let the transition
rate from environment state 2 to 1 be o , and from environment state

1 to 2 be B . Then G(")(g) satisfy the following system of equations.

1) () = gryms 11 + gprie 61) ()
1,5 ¥ Ty v e Y d &
. (3.21)
63! (o) - —1—)-— 4(2) + e 6 () -
M (m-n) u, Imin(R,n)]
&™) (g) - ——(ﬁy—;-—-zJ(l ‘la;rﬁj‘i‘z“‘[G(n) (&) 6™V (g3, |
N O Gy (@) - (3.22)
Ap(m=n) o[min(R,n)]
énﬂ) (g) = a—%—)-— (2 'u]—'(ﬁjTg—— [G(n) (€) g(n) (5)]2,3'
RO WRNO)
for n<m-1
where
d.l('l) = A]m +a
2(]) = >\2m + B
d](n) = A](m-n) + p1[min(R,n)] +a (3.23)

dy(n) = x,(m-n) + uz[min(R.n)] +8 3

)
——
-
g
f

1 if i=3,
J 0 otherwise.

......




16b.

"ne above equations can in principal be solved recursively. Finally,

() () = 6N () 62 () x...x 6™ V(e . (3.28)

Similarly, the expected first passage times satisfy the following

recursive equations.

o = = ] - O =

T Y, = 2] = ar * b E[TL (Y, = 1]
R 0 dEI]) d2(1) 170

- t _ - _ ] Q =
PYSEAN 1] = d]lns ¥ d](ni E[TnﬂlYO 2]

upmin(R,n)]
s RO {E[TnlYO

|
=
[

11 + E[T q1¥g =

1

‘ | ~ - ] =
CTanlYg = 2l = d2(n5 * dzlni E[Tn+1|Y0 1]
uz[min(R,n)] i
+ _——agrﬁy———— t[TnlYo =2]+ E[Tn+]|Y0 = 2]}
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4, FIRST PASSAGE TIME TO LOWER LEVELS

There is some symmetry in the process Q, which we have not exploited
yet. This we proceed to do now. Instead of the processes Sn’ 0<n<N\,
defined earlier, we now consider the processes §n’ 0s<sn<N,

For 1 <n <N\, §n is the restriction of the process Q, observed during
those intervals of time spent at level n, before the process Q moves down
to level n-1 for the first time. A1l S , 1<n <N, are transient Markov
‘processes. The process §0 is the restriction of Q observed at the Towest
level; it is an ergodic Markov process. We denote by Cn the infinitesimal

generator of the process §n’ 0<n<N\.

We may carry out for the processes§n exactly the same analysis as we
did for the processes Sn. We indicate below the main results for two
reasons.
a. The first passage times to lower levels must be analysed via the
processes .
b. We shall be able to describe the precise correspondence between our

analysis, and the analysis of Neuts for the infinite quasi-birth-and-

death process.

The proof of the next lemma is omitted, since it is identical to that

of Lemma 2 and Theorem 1.
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Lemma 3.

The matrices Cn s 0 <n=<N, are recursively determined as follows.

)
¢, =AM,
to= My Mg oy wimh) for 0 <n < N-1.

The stationary probability vector P = (20, gl, vees EN) is determined by

the equations

E'OCO = _0_ 3 (4'1)
PPy A("-l)('ﬁ;l), for 1<n<N, (4.2)
; p 1

z e =1,

n=0 "~ o

The (i,j)th entry of the matrix A(n'l)(-C;l) is equal to

K
n
D eehy e ANDEEh,

T kel
(n-1)
Kn A1,k

-1
(-CH, .. (4.3)
1’1 k=1 _A(.Thl) n k!\]
(n-1),, 5(n-1), , 1h1 .
The factor As | /(-Ai ; ) is the probability that, upon leaving the state
(n-1,i), the process Q moves to the state (n,k). The (k,j)th entry of
(-ﬁ;l) is the expected time spent by the process in state (n,j), starting
from (n,k), before hitting any state at level n-1 (by Lemma 1). Therefore,
it results from (4,3) that [A(n'l)(-ﬁgl)]i j 1s equal to (-Agn;l)) times
the expected time spent in the state (n,j), before the first return to level

n-1, given that the process N starts in the state (n-1,i). This is exactly

the interpretation of Neuts' matrix R for the infinite quasi-birth -and-
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Let ;m n denote the first passage time to level n, down from level

mel, for 0 < n <m<N-1:

Tmn = inf {t>0 : Xt

n | Xg = m+l},
and let
a{mn). ¢ o | %o = M1, Y = i1,
d1(n) - dgn,n) ,
for 0<n<m<N-1. The proof of the next theorem is omitted, since it

js identical to that of Theorem 2.

Theorem 3.

The expected values of the first passage time to lower levels satisfy the

following recurrence relations,.

d o glte, (4.4)

g(’“)= g('“’")= - c;lil(g + A('“*l)g("'*l)), for 0 <m < N-2, (4.5)

dlmon). g(men+)  g(mn+1) g14(n) | for 0 <n <m < N-1, (4.6)

where  &(M")(g) - kr:rm (-Cppp) M), for 0 <n <m<N-1, (4.7)
o

Observe that in the right-hand side of (4.7), the left most matrix

in the product is (-C;il). not (- 5;11)-

B L
. B N T TN & aianaasia s
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5. REMARKS ABOUT THE COMPUTATIONAL ALGORITHMS

The algorithm A described in Section 2 is numerically stable
urder a large range of values for the entries of the generator Q

of {(1.1). The matrices (-C;I) have only non-negative entries. Moreover,

since they measure the time spent atlevel n only, before moving to
level n+l, they usually are of the same order of magnitude for each n,

c2n for large values of N, if the entries of the matrices A(n) are of
tne same order of magnitude for each n, and similarly for the matrices M(n).
* notential source of trouble exists when the A's are either very small or
.2~y large, compared to the other elements of Q. In that case, the expected
sines spent at one level before moving up are respectively very large or
very small, and there is a risk of encountering overflow or underflow

nroblems, when determining the matrices (-C;I).

The steps A3 and A4 of Algorithm A are more delicate. We start step A3
with a vector Y normalized by ™we-s 1. If N is very large, it is likely
“nat the vector Py will be much smaller than LIYER and there is a real risk
¢f running into overflow problems while performing step A3. In order to
i varcome this difficulty, we have merged the two steps A3 and A4, and
~~-normalized the vectors each time a new subvector is determined (see
Alqorithm B in Appendix A).

It results from Theorem 2 that one may compute the vectors E(n,m) at
the same time as one is preparing the evaluation of the stationary probabi-
lity distributions, i.e. during step Al of Algorithm A. In the numerical
eximples presented in the next section, we have determined the first passage

times from level 0 to level m, for 1 <m < N. The corresponding algorithm
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Finally, we compare the numerical efficiency of three approaches.
As observed by Torrez [12], the matrix Q is a band-matrix, and there exist

efficient numerical procedures to solve eigenvectors for band-matrices.
N

The complexity of such procedures, for the matrix Q, is 0(N,K3). where

4"

K=max{K,0<n<N (Wilkinson and Reinsh [13), p. 70). The crucial
step in our algorithm resides in the inversion of the matrices Cn, 0 <n<N-1,

and the solution of the system (2.5).
N
The corresponding complexity is 0( £ Kg
n=0
have to be inverted, and N systems have to be solved. Again, the complexity
N
is 0( £ Kg
n=0
efficiency; in order to distinguish among them, one would have to determine the

). In Keilson et al. [6], 2 N matrices
). Clearly, the three approaches have globally similar numerical
coefficients implicit in the 0(.) notation. However, it must be observed that
the last two have the additional advantage of offering clear probabilistic

interpretations of the computed quantities.

6. NUMZRICAL RESULTS

6.1 Machine repairman model. We consider a system with N=5 machines and

R=1 repairman. The system can be in K=2 environments. The system remains
in the environment state j (j = 1,2) for an exponentially distributed random
interval of time, with parameter aje The failure rate of each machine is
equal to Aj in the jth environment, with Al = 0.12, and Ay = 0.06. The repair
rate of the repairman is y = 1 in both environments.

Our objective is to measure how the rate of changes in the environment

influences the system behaviour. In order to do so, we set ay = B/2, ay = B,
and chose different values for 8. Then the stationary probabilities of being
in each environment remain constant and are given by Y = 2/3 and Y, = 1/3.

We expect that if g is large, then the environment changes rapidly, and the
system is only influenced by the average failure rate Ag = YAt voro = 0.1.

P R R R IS il araiibi * it PR . -

-n awes




22.

On the other hand, if 8 is small, then the environment stays for long
periods of time in the same state, and this should affect the dynamic
benaviour of the system.
We denote by Ei(e)’ 0 < i <5, the marginal distribution of the
nunper of machines on repair, for a given value of 8.
we furthermore denote by ni(x), 0<1i<5, the probability distribution
for the classical machine repairman system, with constant failure rate A.
In table I, we give the cumulative probabilities, corresponding to
(1), for & = a3, Ay and Ay, and to g(8), for 8 = 1072, 107, 1071, 1, 10,

ldz. 105. We observe that the distributions of all the systems in a random

environment are close to the distribution for the system with a unique,
average rate Ay, with increasing differences when the environment changes
more slowly. We also observe that 5(10'5) = ylﬂ(xl) + YZE(AZ), up to five
acecimal places.

Wwe conclude therefore that for the present model, the random environment
nas little effect on the marginal stationary distribution of the number of
machines on repair.

In order to measure the influence of the random environment on the
iynamic behaviour of the system, we have computed the average time needed to
~cach the states [n machines on repair], 1 < n <5, starting from the state

{J) machine on repair]. We present on Figure 1 the results for n=5, which is

“terpretable as the "time to complete failure". The functions are as follows :

- land 2 : f (8) and f,(8), where fj(s) = E{time to reach the state [all
macnines on repair] starting from the state [0 machine on repair and
environment jl}.

- 3, 4 and 5 1 og(hy), g(Az) and g(1,), where g(r) = E{time to reach the state

fall machines on repair}, starting from [0 machine on repairl]},for a system

with constant failure rate .

S VU
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-6 : ylfl(s) + Yzfz(s). equal to the stationary expected time to complete
failure, starting from [0 machine on repair].
We clearly observe several typical ranges of values for g. If g > 10,
the environment changes so rapidly that the expected time to complete failure
is equal to the time for a system with unique failure rate equal to Ag-

For 1071

< <10, the expected time to complete failure does not depend on the
initial environment state. For B < 10'6, the environment changes so slowly
that complete failure is reached before a change of environment occurs.

In fact, it seems that the system is almost completely decomposed in two
different systems, one corresponding to each environment, with very slow

migrations from one to the other. Also, we note that for B < 10'3, the sta-

tionary expected time to complete failure looses any practical significance.

Finally, the average failure rate Ao yields an overestimation of the time to
complete failure for 10-3<B<1, that is, for values of g which are neitner much

lower, nor much higher than the failure rates.

6.2 Mass search model. We define a reference model with p=15 prey and m

predators. The system can be in K=2 environments, with parameters @y and

a, 2 ay- The detection and loss rates are respectively given by A = .001,

A

2 ,005, My = .02 and oy = .01. Thus, environment 2 is more favorable to the
predators, since the detection rate is higher, and the loss rate is lower;
however, environment 1 lasts on the average longer than environment 2.

For this model, the rate of changes in the environment has an influence

on the marginal stationary distribution of the number of prey under surveillance.

In Table II, we give that distribution for five different models. Columns 1

and 2 correspond to models with a unique environment (respectively envircnments

1 and 2).
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“slenns 3 and 4 correspond to the reference model, respectively with

(o= 10'4 {slow environment changes)}, and ay = 1 (fast environment changes).
ciumn 5 corresponds to a model with a unique, average environpent :
~§ Ayt «%— X2’ u = —§~ uy + —%—-uz. Note that the distribution in column
& nas two modes, respectively corresponding to the modes in columns 1 and 2.
Ae have also measured how the system responds to increases in the effi-
oy of the predators. We have considered two ways for the predators to
cecome more efficient. The first one is by becoming more numerous, the second
. increasing the probability of detecting a free prey, or by decreasing the
soability of losing a prey under surveillance. We present on Figures 2 and

. e values of tn i n=5,10,15, j=1,2, where

]

t ;E E [time until n prey are under surveillance | at time 0,

0 prey under surveillance, environment state is jl,

*.r tne reference model with ay = .0001, and m equals 15 to 45. It clearly
:oers that environment 2 is more favorable for the predators. The curve for
L presents a plateau which we explain as follows. We denote by Tﬁ,j the
+'=me until n prey are under surveillance given that initially zero prey are
v ler surveillance, for a system with a unique environment, identical to
cvuronment j.o For values of m less than 32, say, Tis,l is so large (greater
- iOS on the average) that the reference model with ay = .0031 switches to
i ironment 2 before 15 prey are under surveillance (the switch occurs on the
aieraye after 10* units of time). Once the model is in environment 2, it takes
notie average 102 to 103 units of time to have all preys under surveillance.
“+i% occurs before the environment switches back to 1, and the total elapsed

~ = iy, on the average, approximately 104.
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On Figures 4 to 7, we present the values of t_ ., n=5,10,15, j=1,2,

n,Jj
for models derived from the reference model. We consider a) = .0001,

m equals to 15 and 20, and we multiply the rates Aj by V& , we divide the

rates M by W , with y > 1, so that the probability ratio’'s "probability of
detecting / probability of losing" are uniformly multiplied by y in each state.
These figures may be used in conjunction with Figures 2 and 3 to measuras trade-
off such as the following one. Suppose we start from the reference model with
m=15, and that we double the number of predators to m=30. This will entail a
reduction on tls,l’ which can be measured on Figure 2. We can then measure on
Figure 4 that the probability ratio must be multiplied by a factor y =3 in order
to obtain the same reduction.

In Table III, we give the approximate values of y which give the same reduction

as doubling the number of predators, for m=15 and m=20.
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APPENDIX A.

Algorithm B : evaluation of the stationary probability distribution, the
first and second moments of the time to reach level m, 1 <m <N, starting

from level 0.

Bl First passage times from level O to higher levels.

B1.1 Initial values.

C(-cghy « -1y (Equation (2.2))
g(l) « (-C{,l) e; ullel) <l (3.12)
1(1) « 2(-C61) 2(1),’1(1,1) « 1(1) ; (3.18)
6V (0) « (-cgly a0 6(1:D(g) « 6l (3.11)
() (_cal)Z A0, y(1L.1) (1) (3.15)

B1.2 Levels 2 to N.

for n=2t N do

(€L e =@l Dy y(D oLy 4021 (2.3) ‘

]

al™ e (el ¢ Min (L) (3.13) i
U(l’n‘) - 2(19n-1)+ G(l’n'l)(o) y_(n) 3 (3.14)

l(”) - 2(-C;}1)(I + M("‘I)U("'l)) !(n)

s (-c;bpy wnDyln-b), (3.19)




T T -

!(l.n) . 1(1’"°1)+ 9 U(l,n-l)g(n)+ G(l,n-l)(o) l(n); (3.20)
6ME) « (c;lp atmhs (3.11)
a(bM gy « ol Digy alMay; (3.8)
N S I R T TC R IS (3.16)
p(tm o y(hn=Dgn) g LDy y(n) (3.17)
52 Stationary distribution.
82.1 Initialization of the recurrence.
tey « AN N el y g (1D, (2.3)
ny + solutionof my Cy=0,mye=1) (2.5)
32.2 Determination of P, 0 <n <N.
for n=N-1 to 0 do
(1, g MDD (2.9

(re-normalize)

L

for k=n to N do

es




TABLES

|
| Table I. Cumulative probabilities-number of machines on repair.
b
|
|

Table II. Marginal distribution-number of prey under surveillance.
’ Missing numbers are less than 5.107°.

Table III. Values of y giving the same reduction as doubling the
] number of predators.
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0 1 2 3 4
A{ng) 56395 .84593 .95872 .99256 .99932
; 56395 84593 .95872 .99256 .99932
56398 84589 .95870 .99255 .99932
56421 84561 .95850 .99249 .99931
56579 .84397 .95711 .99202 .99925
56910 .84151 .95424 .99091 .99908
C7%y 157033 .84078 .95321 .99047 .99900
57050 .84068 .95306 .99040 .99899
49516 .79226 .93486 .98620 .99852
72118 .93754 .98946 .99881 .99993

Table 1

Cumulative probabilities-number of machines on repair

|
?




| n I II 111 Iv v
- —
; 0 .00073 .00048
E 1 .00329 .00543 .00005 .00003
% 2 .04019 .02662 .00061 .00043
3 .11319 .07504 .00428 .00342
4 .20375 .00002 .13524 .01959 .01724
5 .24653 .00026 .16400 .06175 .05835
6 .20544 .00220 .13776 .13712 .13601
1 7 .11886 .01270 .08407 .21606 .22012
; 8 .04755 .05082 .04948 .24021 .24628
é 9 .01294 .13835 .05546 .18523 . 18752
g 10 .00233 .24903 .08481 .09610 .03441
i 11 .00026 .28299 .09427 .03198 .03001
| 12 .00002 .18866 .06255 .00633 .00560
13 .06531 .02160 .00066 .00054
14 .00933 .00308 .00003 .00002
15 .00031 .00010
Table II

Limiting distribution-number of prey under surveillance.

Missing numbers are less than 5.10'6




st

m 51 | Y101 | Y151 | Ys5,2 | ti0,2 | t1s,2
15 4.1 | 4.4 7.8 4.9 7.1 | >15
20 4.1 | 4.0 3.9 4.5 5.6 5.4

Table III

Values of y giving the same reduction as doubling

the number of predators
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FIGURES

Expected time to reach the state [all machines on repair],

starting from

Expected time
starting from

[no machine on repair].

to reach the states [n prey under observationl,
[0 prey under observation, environment 1],

varying number of predators.

Expected time
starting from

to reach the states [n prey under observation],
[0 prey under observation, environment 2],

varying number of predators.

Expected time
starting from
15 predators,

Expected time
starting from
15 predators,

Expected time
starting from
20 predators,

Expected time
starting from
20 predators,

to reach the states [n prey under observation],
[0 prey under observation, environment 1],
varying probability ratio.

to reach the states [n prey under observation],
[0 prey under observation, environment 2],
varying probability ratio.

to reach the states [n prey under observationl,
[0 prey under observation, environment 1],
varying probability ratio.

to reach the states [n prey under observation],
[0 prey under observation, environment 2],
varying probability ratio.
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Fig.1. Expected time to reach the state [all machines on repair], starting from
[no machine on repair].
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Fig.2. Expected time to reach the states [n prey under observation], starting
from [0 prey under observation, environment 1}, varying number of predators.
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Fig.3. Expected time to reach the states [n prey under observation], starting
from (0 prey under observation, environment 2], varying number of predators.
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Fig.4. Expected time to reach the states [n prey under observation], starting
from [0 prey under observation, environment 11, 15 predators, varying
probability ratio.
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Fig.5. Expected time to reach the states [n prey under observation], starting
from [0 prey under observation, environment 2], 15 predators, varying
probability ratio.
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Expected time to reach the states [n prey under observation], starting
from [0 prey under observation, environment 1}, 20 predators, varying
probability ratio.
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